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45Systematics of the anomalous high-temperature Sc spin–lattice relaxation
in scandium hydrides and deuterides
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Abstract

45The nuclear magnetic resonance of the metal nucleus Sc shows anomalous spin–lattice relaxation at high temperatures (T$800 K) in
scandium dihydride and dideuteride. The anomalous rate R is represented by R 5Aexp(2U /k T ), with an effective excitation1A 1A B

enthalpy U and strength A. U increases sharply with decreasing H(D) vacancy concentration as [H(D)] / [Sc]→2.00. These new
measurements and analysis support the concept of stable clusters of interacting thermally excited H(D) Frenkel interstitials and vacancies
in fluorite-structure dihydrides and dideuterides.
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An anomalous contribution R to the nuclear spin– ize the dependence of the parameters A and U on H(D)1A

lattice relaxation rate R appears at high temperatures concentration to assess and narrow the field of plausible1

(T|800 K) in many metal–hydrogen (M–H) systems [1]. mechanisms responsible for R . The new measurements1A

The anomaly is that, in addition to the usual R maximum and analysis support the concept of stable clusters of1

that occurs at intermediate temperatures due to hydrogen interacting H(D) vacancies and interstitials [2].
45diffusive motion, R passes through a minimum and In these systems the measured Sc relaxation rate R1 1

increases sharply again at higher temperatures instead of results from the sum of three independent rate contribu-
returning to the value R determined by the conduction tions:1e

1electron contribution to R . For protons, H, and deuterons,1 R 5 R 1 R 1 R (2)2 1 1e 1Q 1AD, this is well-documented in a range of solid-solution
where R 5C ?T is due to the hyperfine interaction withand dihydride (dideuteride) phases, and a satisfactory 1e e

the conduction electrons. R typically dominates for T #explanation is presented [1]. But because of the unfavour- 1e

300 K, and the factor C is only weakly temperature andable nuclear moment properties of nearly all metal nuclei e

composition dependent. R results from the fluctuatingin M–H systems, the only one for which high-temperature 1Q
4545 Sc electric quadrupole interaction due to the randomanomalous relaxation has been established is Sc [2], and

1 hopping of vacancies on the H(D) sublattice:it is clear that the mechanism responsible for R of H1A
2 45and D cannot explain R of Sc.1A 224p c v t 4v tv 0 v 0 v2We report the results of further measurements of the ]] ]]] ]]]R 5 kG l 1 (3)1Q NN F 2 2 2 2 G45 49w 1 1 v t 1 1 4v t0Sc spin-relaxation rate R at high temperatures (to |1200 0 v 0 v1

K) in the fluorite-structure dihydrides and dideuterides, 45kG l is the average Sc quadrupole coupling due to aNNScH and ScD . The temperature dependence of the22x 22x nearest-neighbour H(D) vacancy or vacancies, v is the0anomalous rate is 45Sc resonance frequency, and the factor c 5x /2 is thev
R 5 A ? exp(2U /k T ) (1)1A B H(D) vacancy concentration. The vacancy mean dwell

time is denoted as t in Eq. (3). While it is not avwhere U is an effective excitation enthalpy and A mea-
requirement for the validitity of Eq. (3), we assume thatsures the interaction strength responsible for the relaxation.

21the vacancy jump frequency, t , follows ArrheniusvThe primary objective of this work has been to character- 0 0 21behaviour, i.e. t 5t exp(H /k T ), where (t ) is thev v a B v
*Corresponding author. jump frequency prefactor, and H is the activation enthalpya
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for vacancy diffusion. R is most effective when v t ¯1,1Q 0 v

typically in the range 400#T #600 K, and is markedly
less effective at lower and higher temperatures.

45Two examples of anomalous Sc relaxation in ScD22x

in Fig. 1 show clearly the exponential increase in R at1

temperatures well above the peak due to deuterium va-
cancy hopping. Several features of these data should be
noted: (1) As anticipated from Eq. (3), the maximum value
of R , R , is markedly greater for c 50.045 than for1Q 1Q,max v

c 50.01. This results from both the greater c and from av v

greater kG l due to the more probable occurrence ofNN

multiple nn vacancies to a Sc site. (2) R for c 50.011Q,max v

occurs at a substantially lower temperature than for c 5v

0.045 (450 K vs. 540 K), showing that the condition
v t ¯1 is satisfied at a lower temperature, consistent with0 v

faster deuterium diffusion at the smaller vacancy con-
centration, as attributed to hydrogen occupancy of octahed-
ral (0) sites in YH [3]. (3) In contrast, the excitation22x

enthalpy U increases with decreasing c . (4) The rate Rv 1A
45appears to reach a maximum value for c 50.01, but this is Fig. 2. The measured Sc spin–lattice relaxation rate R in ScDv 1 1.99

not evident for c 50.045. In addition, R is sig- measured at 12.2 MHz (circles) and 24 MHz (triangles). The solid curvev 1A,max
shows the conduction electron contribution R extrapolated from low-nificantly greater than R for c 50.01. 1e1Q,max v

45 temperature measurements.Values of R ( Sc) in ScD , measured at two reso-1 1.99

nance frequencies, are shown in Fig. 2, where the solid
curve shows the rate R extrapolated from low tempera-1e

tures. As expected from Eq. (3), R is inversely1Q,max

proportional to v . Also, on the low-temperature side of the high-temperature fluctuations responsible for R ,0 1A
21the R peak where v t »1, R is frequency dependent, although slow compared to the vacancy hopping rate t ,1Q 0 v 1Q v

whereas on the high-temperature side where v t «1, it is is still fast compared to v .0 v 0

not. In sharp contrast, R remains frequency-independent Taken together, the normal frequency dependence of1

throughout the high-temperature region of anomalous R and the absence of such dependence for R , seen in1Q 1A
21relaxation. This means the characteristic frequency t of Figs. 1 and 2, eliminate such relaxation mechanisms as

metal atom self-diffusion, diffusion of H(D) on 0-sites, the
diffusion of other interstitial impurities, e.g. oxygen or

51iron, as seen in the high-temperature spin relaxation of V
in vanadium, for example [4], or quadrupole interactions of
45Sc on particle surfaces [5]. Fixed concentrations of
paramagnetic impurities are found experimentally to have

45no effect on the Sc relaxation rate (e.g., 100 parts-per-
million of Gd), and an electronic structure transition would
affect all spins [H(D) and Sc] at the same temperature,
which does not occur [1].

We now consider what can be learned from the depen-
dence of U and A on H(D) vacancy concentration. As
shown in Fig. 3, U increases sharply with decreasing c inv

ScD . The solid curve in this figure is a least-squares fit22x
2bof the function, U 5B?(22x) , yielding B50.089 eV and

b 50.54, and suggesting that the excited entity becomes
critically inhibited as c →0. Values of A also increase withv

3 21 10 21decreasing c , from 4.8?10 s to |10 s for 0.095$v

c $0.005.v

Stable clusters of interacting vacancies and interstitials
have been found in many nonstoichiometric compounds,45Fig. 1. Sc spin–lattice relaxation rate, R 2R , in ScD (squares) and1 1e 1.91 including analogous fluorite-structure oxides, e.g. UO21xScD (triangles) measured at 12.2 MHz. The straight lines through the1.98
[6]. In the latter, clusters may involve both vacancies athigh-temperature data points are least-squares fits, yielding U 50.47 eV

for x50.09 and U 51.27 eV for x50.01. regular anion sites (T-sites) and interstitials at intermediate
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arises primarily from the exponential increase in the
number of Frenkel interstitials, n 5n ?exp(2E /2k T )cl 0 I B

[7], where E is the enthalpy needed to move an anion (HI

or D) from a lattice site to an interstitial site. Hence, we
equate U with E /2, and conclude that the rapid increase inI

U as c →O reflects the increased energy needed to createv

a Frenkel interstitial–vacancy cluster as the vacancy
concentration becomes very small.

Calculations show the electric field gradient (EFG) at a
Sc site due to a relaxed ion is very nearly compensated by
that of the vacated T-site. However, the Frenkel interstitial
yields an EFG greater than that due to an ion or vacancy at

2a regular T-site. On this basis, we find that kG l /cl
2 |kG l 2.5. Thus the cluster mechanism furnishes a5NN

possibility for R to exceed R , as is evident for1A 1Q,max

ScD in Fig. 1 and for ScD in Fig. 2. At the1.98 1.99
23temperature of R , v t |10 so one needs v t .1A,max 0 v 0 clFig. 3. Effective excitation enthalpy, U (eV), for anomalous high-tempera- 23

45 10 to satisfy t .t . Taking v t ¯0.1 so that v t ,1cl v 0 v 0 clture relaxation of Sc in ScD as a function of deuterium vacancy22x

for frequency independence, then yields n ¯0.25 for theconcentration, c 5x /2. The solid curve is a least-squares fit of U 5B(22 clv
2bx) , with B50.089 eV and b 50.54. examples in Fig. 1.

Little other experimental evidence exists to support or
deny the cluster hypothesis for the dihydrides. A neutron
diffraction study of PuD [8] showed a fluorite structure2.25

positions. It has previously been proposed that hydrides with substantial numbers of vacancies at regular T-sites
(deuterides) may display analogous effects [2], and Fig. 4 together with interstitial deuterium ions, and the results
furnishes an example of a possible cluster. Because of the were best fitted by postulating vacancy–interstitial clusters.
high vacancy mobility, the clusters very likely have a finite Nevertheless, the cluster picture provides the only explana-

45lifetime, although longer than the vacancy jump time, so tion for the anomalous high-temperature Sc relaxation
their quadrupolar interaction with Sc nuclei will be char- rate behaviour consistent with all the experimental NMR
acterized by a relatively long correlation time, t .t . evidence.cl v

Considering the clusters as remaining essentially static
over their lifetime, t would need to remain short enoughcl

to conform to v t ,1 in order to satisfy the observed0 cl

Acknowledgmentsfrequency independence of R . The rate R due to1A 1Q,cl

clusters will be given by Eq. (3) with c replaced by n ,v cl
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